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Effect of radiative loss on pulses in periodically inhomogeneous birefringent optical fibers
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The evolution of coupled pulses in a nonlinear birefringent optical fiber with a periodic modulation of the
group velocity birefringence is considered. By using a trial function consisting of coupled pulses with variable
parameters in the two modes in an averaged Lagrangian, ordinary differential equations for the pulse param-
eters are obtained. Furthermore, by considering linearized equations the effect of the dispersive radiation shed
as the pulses evolve is calculated and the ordinary differential equations are augmented to include mass and
momentum loss due to dispersive radiation. It is found that the inclusion of this dispersive radiation is
necessary in order to obtain good agreement with full numerical solutions of the governing equations.
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I. INTRODUCTION

The use of solitons as information carriers in optical co
munication systems was first proposed by Hasegawa
Tappert@1#. Since this time there has been extensive resea
on the dynamics of soliton propagation in nonlinear opti
fibers. Much of this research has centered around the cou
solitons that exist in birefringent nonlinear optical fibe
since birefringence can affect the propagation of solitons
long distance communication systems@2#. As well as having
detrimental effects, birefringence can be used to advantag
all-optical devices such as nonlinear directional couplers@3#.
Real optical fibers are of course nonuniform and the effec
this nonuniformity on soliton propagation needs to be inv
tigated. The variation of fiber properties along a real opti
fiber can be complicated and studies to date have chose
consider either of two special cases, a periodic variation
random variation. Soliton propagation in a nonuniform, no
birefringent optical fiber, which is governed by the nonline
Schrödinger~NLS! equation, has been investigated for a p
riodic variation of the dispersion by Gordon@4#, Abdullaev
et al. @5#, Malomedet al. @6#, and Abdullaev and Caputo@7#
and for a random variation of the dispersion by Ueda a
Kath @8# and Abdullaev and Caputo@7#. The extension to a
birefringent fibre with a periodic variation of the birefrin
gence parameter was made by Malomed and Smyth@9# using
the chirp variational method of Anderson@10#. In the case of
a birefringent fibre with a periodic birefringence modulati
it was found that resonances between the forcing due to
periodic birefringence and the amplitude or position osci
tions of the pulses could exist. However, the work of M
omed and Smyth did not take account of the dispersive
diation shed as the pulses evolve. It is expected that
radiation will have a significant effect on the pulse evolutio
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particularly when a resonance between the pulse oscillat
and the forcing exists. It is the determination of the effect
this shed radiation that is the subject of the present work

In the case of the NLS equation, Kath and Smyth@11#
developed an approximate method to determine the effec
the dispersive radiation shed by a pulse as it evolves from
initial condition to a soliton. This method assumed that t
pulse evolves with the sech profile of a NLS soliton, but w
its parameters such as amplitude and width depending on
distancez down the fiber. Ordinary differential equations fo
these parameters were then determined via the Lagran
for the NLS equation. The effect of the dispersive radiati
shed as the pulse evolves was then added to these variat
equations by determining an appropriate solution of the
earized NLS equation. Solutions of these variational eq
tions with the effect of dispersive radiation added were fou
to be in excellent agreement with full numerical solutions
the NLS equation. The method of Kath and Smyth has b
extended to model a nonlinear twin-core fiber~a type of all-
optical switch! @12#, coupled pulse propagation in a~uni-
form! birefringent optical fiber@13# and the stability of
coupled solitons in a birefringent optical fiber@14#. In all
these extensions it was found that there was very good ag
ment with full numerical solutions of the relevant governin
equations. In previous studies, approximate equations g
erning pulse evolution in nonlinear optical fibers had be
obtained using the chirp variational method of Anders
@10#. However, this method does not include the radiat
shed by the pulses as they evolve. It has been found tha
including the effect of this radiation, the method of Kath a
Smyth yields significantly better agreement with full nume
cal solutions.

In the present work the method of Kath and Smyth@11#
will be extended to study the evolution of coupled pulses
a nonlinear birefringent optical fiber whose birefringence p
rameter has a periodic variation down its length. It is fou
that the calculation of the shed radiation is particula
7231 © 1998 The American Physical Society
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simple in this case as it is determined by the periodic form
the birefringence. This simplicity is similar to the case f
the NLS equation with periodic dispersion@4#. Above a criti-
cal value of the amplitude of the periodic birefringence it
found that the pulses in the two modes split apart, as
found by Malomed and Smyth@9#. However, the critical val-
ues found by Malomed and Smyth are much lower than
values obtained from both the approximate equations of
present work and from full numerical solutions. This is d
to the neglect of the radiation shed as the pulses evolve s
the shed radiation acts as a damper on the oscillations
tends to keep the pulses together. Both the full numer
solution and the solution of the approximate equations
rived in the present work show a broad trough in the criti
forcing amplitude for pulse splitting in the vicinity of th
resonances found by Malomed and Smyth. It is found t
the inclusion of the dispersive radiation leads to good ag
ment between solutions of the present approximate equa
and full numerical solutions of the coupled NLS equatio
governing a birefringent fiber. Indeed by comparing with s
lutions of the equations of Malomed and Smyth it is sho
that the inclusion of this radiation is necessary in order
obtain adequate agreement with full numerical solutions.

II. APPROXIMATE EQUATIONS

Let us assume that the nonlinearity in the optical fiber c
be described by the Kerr effect. Then the nondimensio
equations governing optical fibers with a nonuniform bi
fringence and with two distinct modes operating in t
anomalous dispersion regime are the coupled nonlin
Schrödinger ~NLS! equations@15#

i
]u

]z
1 id~z!

]u

]t
1

1

2

]2u

]t2 1~ uuu21Auvu2!u50,

i
]v
]z

2 id~z!
]v
]t

1
1

2

]2v
]t2 1~ uvu21Auuu2!v50. ~1!

Hereu andv are the complex valued envelopes of the tw
modes,t is the normalized reduced time, andz is the nor-
malized spatial variable along the length of the fiber. T
parameterA is the scaled nonlinear cross-phase-modulat
coefficient andd(z) is half the difference in the linear grou
velocity due to the linear birefringence. As a simple mode
a fiber with varying group velocity birefringence, it is a
sumed thatd is a periodic function of distancez down the
fiber

d~z!5e sin~kz!. ~2!

This expression ford(z) has no constant component since
can be factored out using a simple phase transformat
This model of a nonuniform fiber is, of course, extreme
idealized. For a start, the assumed periodic variation of
birefringence is unrealistic for a real fiber. Furthermore, thz
dependence of the other coefficients in the coupled N
equations~1! have been neglected and, in the case of a p
odically twisted fiber, a linear coupling term in the coupl
NLS equations has been neglected@16#. In spite of all these
simplifications, the study of the coupled NLS equations~1!
with d given by Eq.~2! is still worthwhile as the very sim-
f
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plicity of the equations allows the effect of the dispersi
radiation shed as pulses evolve to be calculated. This t
gives an idea of the effect of dispersive radiation in mo
physically realistic cases.

The coupled NLS system~1! has the Lagrangian

L5 i ~uuz* 2u* uz!1uutu22uuu41 id~z!~uut* 2u* ut!

1 i ~vvz* 2v* vz!1uv tu22uvu42 id~z!~vv t* 2v* v t!

22Auuu2uvu2, ~3!

where * denotes the complex conjugate. To obtain an
proximate solution of the coupled NLS equations~1! for
evolving coupled pulses, the forms

u5S h1sech
t2y1

w1
1 ig1Deis11 iV1~ t2y1!,

v5S h2sech
t2y2

w2
1 ig2Deis21 iV2~ t2y2! ~4!

will be assumed for the modesu andv, as in@11–14#. Here
h i , wi , yi , Vi , s i , and gi , i 51,2, are functions of the
distancez along the fiber. The first terms in these expressio
for u andv represent varying solitary wave pulses. The s
ond terms represent the effect of the~low frequency! radia-
tion in the vicinity of the pulses@11#. These second terms ar
assumed to have not dependence for two reasons. The fir
is that full numerical solutions of the coupled NLS equatio
~1! show that the radiation in the vicinity of the pulses h
essentially constant magnitude, as in@11–14#. The second is
that the perturbed inverse scattering solution of Gordon@4#
for a near-soliton initial condition for the NLS equatio
shows that the dispersive radiation in the vicinity of t
evolving soliton is of low frequency@11#. The dispersive
radiation then forms shelves under the pulses, as has
observed in experimental situations@17#. Since from numeri-
cal solutions it is observed that the dispersive radiation
small amplitude relative to the pulses, it will be assumed t
ugi u!h i , i 51,2. The final point to note about the puls
forms ~4! is that the dispersive radiation cannot continue
be independent oft away from the pulses. As in@11–14#, it
is therefore assumed that the form of the dispersive radia
holds for 2l 1/2,t,l 1/2 for mode u and 2l 2/2,t
,l 2/2 for mode v. The form of the dispersive radiatio
outside these intervals will be discussed in the next sect
Furthermore, the values ofl 1 and l 2 will be found by ex-
amining the yet to be derived pulse equations.

The trial functions~4! are now substituted into the La
grangian~3!, from which the averaged Lagrangian

L5E
2`

`

Ldt ~5!

is obtained as
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L54h1
2w1~s182V1y18!12ph1w1g1822pw1g1h1822ph1g1w1812l 1g1

2~s182V1y18!1
2

3

h1
2

w1
12V1

2h1
2w12

4

3
h1

4w1

14dV1h1
2w122Ah1

2h2
2I 114h2

2w2~s282V2y28!12ph2w2g2822pw2g2h2822ph2g2w2812l 2g2
2~s282V2y28!1

2

3

h2
2

w2

12V2
2h2

2w22
4

3
h2

4w224dV2h2
2w2 . ~6!
il
e
ul

ip
of

ed

-

Here the integralI 1 is

I 15E
2`

`

sech2
t2y1

w1
sech2

t2y2

w2
dt. ~7!

In calculating the averaged Lagrangian~6!, the only terms of
O(g1

2) andO(g2
2) that have been retained are those that w

be found to contribute to mass conservation. Any other s
ond order terms make a negligible contribution to the res
ing variational equations and have been neglected.

Taking variations of the averaged Lagrangian~6! with
respect to the parameter results, on some algebraic man
lation, in the following equations governing the evolution
the pulses through the nonuniform fiber

d

dz
~h1w1!5

l 1g1

p Fh1
22

1

2
w1

221A
h2

2

w1
2 ~w1I 12I 2!G , ~8!

ds1

dz
2

1

2
V1

dy1

dz
5h1

22
1

2
w1

222d~z!V11A
h2

2

w1
2 ~w1I 12I 2!,

~9!

dg1

dz
52

2

3p
h1~h1

22w1
22!2

Ah1h2
2

pw1
2 ~w1I 122I 2!,

~10!

d

dz
~2h1

2w11l 1g1
2!50, ~11!

d

dz
@~2h1

2w11l 1g1
2!V1#52

2Ah1
2h2

2

w2
I 3 , ~12!
l
c-
t-

u-

dy1

dz
5V11d~z!, ~13!

plus symmetric equations for the parameters of modev. The
integralsI 1 and I 2 in these variational equations are defin
by

I 25E
2`

`

~ t2y1!sech2
t2y1

w1
sech2

t2y2

w2
tanh

t2y1

w1
dt

~14!

and

I 35E
2`

`

sech2
t2y1

w1
sech2

t2y2

w2
tanh

t2y2

w2
dt. ~15!

The coupled NLS equations~1! have the mass conserva
tion equation

]

]z E
2`

`

uuu2 dt50, ~16!

the momentum conservation equation

i
]

]z E
2`

`

~u* ut2uut* !dt522AE
2`

`

uuu2
]

]t
~ uvu2!dt,

~17!

and the energy conservation equation
quation
]

]z E
2`

`

@ i ~ uutu22uuu41uv tu22uvu422Auuu2uvu2!1d~z!~u* ut2uut* !2d~z!~v* v t2vv t* !#dt

5d8~z!E
2`

`

@~u* ut2uut* !2~v* v t2vv t* !#dt. ~18!

Substituting the trial functions~4! into the mass conservation equation~16! gives the variational equation~11!. Similarly the
variational equation~12! can be shown to express conservation of momentum on using the momentum conservation e
~17!. Finally, substituting the trial functions~4! into the energy conservation equation~18! yields
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dH

dz
5

d

dzF2

3

h1
2

w1
1V1

2~2h1
2w11l 1g1

2!2
4

3
h1

4w11
2

3

h2
2

w2
1V2

2~2h2
2w21l 2g2

2!2
4

3
h2

4w222Ah1
2h2

2I 112dV1~2h1
2w11l 1g1

2!

22dV2~2h2
2w21l 2g2

2!G
52V1d8~z!~2h1

2w11l 1g1
2!22V2d8~z!~2h2

2w21l 2g2
2!. ~19!

It is noted from this equation that the energyH is not conserved due to the variation in the birefringenced with z.
For simplicity, in the present work we shall concentrate on the case of antisymmetric modesu and v, so thath15h2 ,

w15w2 , s15s2 , V152V2 , y152y2 , andg15g2 . This antisymmetric assumption allows the integralsI 1 ~7!, I 2 ~14!, and
I 3 ~15! to be evaluated exactly. Under this assumption these integrals can be shown to be

I 15
4w1

sinh2z
@z coth z21#,

I 25
w1

2

sinh2z
@z coth z21#,

2
zw1

2

sinh2z
@3 cothz1z23z coth2z#, ~20!

and

I 35
2w1

sinh2z
@3z coth2 z23 cothz2z#,

where

z5
2y1

w1
. ~21!

We shall now replace the mass conservation equation~11! by the energy conservation equation~19! in the set of equations
governing the evolution of the pulses. The variational equations~8! to ~13! plus the energy conservation equation are not
independent, so this can be done. Using the momentum conservation equation~12! and the antisymmetry assumption, th
energy conservation equation~19! can be rewritten as

dH

dz
5

d

dz F4

3

h1
2

w1
2

8

3
h1

4w112~2h1
2w11l 1g1

2!V1
222Ah1

2h2
2I 1G58Ad~z!

h1
2h2

2

w1
I 3 . ~22!
t
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With the assumed antisymmetry, the equations governing
evolution of the pulses in the nonuniform fiber are then~8!–
~10!, ~12!, and ~22!. These equations for constantd are the
same as those of@13# for pulse propagation in a birefringen
fiber.

For a birefringent fiber, Kath and Smyth@13# showed that
the lengthl 1 of the shelves under the pulses could be de
mined from the requirement that the frequency of oscillat
of the pulse amplitudeh1 as given by the approximate equ
tions approaches the soliton oscillation frequency as a ste
state is approached. This requirement gave

l 15
3p2

8ĥA11A
~23!

when the pulses approached the coupled soliton solutio
the coupled NLS equations~1! for d5const, whereĥ is the
amplitude of the steady coupled solitary waves. In
he

r-
n

dy

of

e

present case of a nonuniform fiber the pulses will not
proach a steady state since the fiber is continuously vary
However, the shelf width expression~23! can still be used,
with the steady stateĥ replaced by the local pulse amplitud
h1 . Therefore, in the present work, the shelf width will b
taken to be

l 15
3p2

8h1A11A
. ~24!

Replacing the steady state amplitude by its local value allo
the approximate equations to respond to the local fiber pr
erties.

The system of equations governing the evolution of pul
in a nonuniform fiber is not complete, however, since t
effect of the dispersive radiation shed by the pulses as t
evolve has not been taken into account. This radiation is
subject of the next section.
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III. DISPERSIVE RADIATION

As can be seen from Fig. 1, the amplitude of the disp
sive radiation shed by the pulses is small compared with
pulse amplitude. Hence the shed dispersive radiation is g
erned by the linearized NLS equation

i
]u

]z
1 id~z!

]u

]t
1

1

2

]2u

]t2 50. ~25!

In previous studies of the radiation shed by an evolving pu
@11–14# this radiation was calculated as the solution of
initial value problem for an appropriate linearized NLS equ
tion. In the present case of a nonuniform fiber, this init
value type solution is not appropriate since the fiber is va
ing continuously, which causes the pulses to never settle
steady state and so radiate continuously. Hence the appr
ate solution of the linearized NLS equation~25! in the
present context is that of a continuous source.

It can be easily verified that the linearized NLS equat
~25! has the modulated traveling wave solution

u5Beibt2 ~1/2!ib2z1 i ~be/k!cos~kz!, ~26!

whereB andb are constants. Let us assume for the mom
that the properties of the pulses were constant. Then if
denote the height of the shelves below the evolving pulse
r , matching between the shelf and the shed radiation g
B5r . Since the radiation is being shed by the pulses,
phase velocity of the shed radiation at the end of the s
must be equal to the pulse velocity, so that

b52V1 ~27!

@see the variational equation~13!#. These expressions forB
andb are only strictly valid if the pulses have constant pro
erties. However, let us assume that these expressions fB
andb hold when the pulses are varying. This is equivalen
assuming thatB andb are slowly varying, which is the cas
whene is small, as in the present work.

The linearized NLS equation~25! has the mass and mo
mentum conservation equations

FIG. 1. Numerical solution foruuu of the coupled NLS equation
~1! at z560.0 fore50.1, k51.0, A52/3 and the initial conditions
h51.0 andw51.0/A11A.
r-
e
v-

e

-
l
-
a
ri-

t
e
y

es
e
lf

-

o

i
]

]z
uuu21

1

2

]

]t
@2id~z!uuu21u* ut2uut* #50 ~28!

and

i
]

]z
~u* ut2uut* !1

1

2

]

]t
@2id~z!~u* ut2uut* !1u* utt

1uutt* 22uutu2#50, ~29!

respectively. Integrating the mass conservation equation~28!
from the edge of the shelft5y11l 1/2 to t5` gives the
mass loss to the dispersive radiation traveling to the righ

d

dz Ey11l 1/2

`

uuu2dt5V1r 2 ~30!

on using the form~26! for the dispersive radiation. Similarly
integrating the mass conservation equation fromt52` to
t5y12l 1/2 gives the mass loss to dispersive radiation tr
eling to the left as

d

dz E2`

y12l 1/2

uuu2dt52V1r 2. ~31!

The momentum conservation equation~29! can be integrated
in the same way to give the momentum loss to dispers
radiation traveling to the right as

i
d

dz Ey11l 1/2

`

~u* ut2uut* !dt524V1
2r 2 ~32!

and the momentum loss to radiation traveling to the left

i
d

dz E2`

y12l 1/2

~u* ut2uut* !dt54V1
2r 2. ~33!

These mass and momentum loss expressions can the
added to the variational equations of the previous sectio
complete the approximate equations governing the evolu
of the pulses. Before this is done, however, care must
taken with the form~26! for the shed radiation. This radia
tion has phase velocityV11d. Now the group velocity for
the radiation~26! is cg52V11d. Hence forV1.0, the ra-
diation is shed to the right of the pulseu and the mass and
momentum loss expressions~30! and~32! are the appropriate
ones. By the same reasoning, the mass and momentum
expressions~31! and ~33! are the appropriate ones forV1
,0. This unsymmetric nature of the mass and moment
loss can be seen in Fig. 1.

As in @11–14#, the appropriate mass loss expression~30!
or ~31! is added to the variational equations of the previo
section, so that the equation forg1 ~10! becomes

dg1

dz
52

2

3p
h1~h1

22w1
22!2

Ah1h2
2

pw1
2 ~w1I 122I 2!22ag,

~34!

where
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a5
3h1uV1uA11A

16
. ~35!

Adding the appropriate momentum loss expression~32! or
~33! to the momentum equation~12! gives the final momen-
tum conservation equation as

d

dz
@~2h1

2w11l 1g1
2!V1#52

2Ah1
2h2

2

w2
I 322uV1

2r 2,

~36!

whereu51 if V1.0 andu521 if V1,0, as discussed in
the previous paragraph.

The final quantity needed, the heightr of the shelf under
the pulses, can be found from the work of Kath and Sm
@13# on pulse evolution in birefringent fibers as

r 25
3h1A11A

8
~2h1

2w11l 1g1
2!. ~37!

The full set of equations governing the evolution of t
pulses, including mass and momentum loss to dispersive
diation, has now been derived, these equations being~8!, ~9!,
~13!, ~22!, ~34!, and ~36!. In the next section solutions o
these approximate equations will be compared with full n
merical solutions of the coupled NLS equations~1! and so-
lutions of the chirp equations of@9#.

IV. RESULTS

In the comparisons of this section the numerical solutio
of the coupled NLS equations~1! will be obtained using the
pseudospectral method of Fornberg and Whitham@18# and
the approximate equations~8!, ~9!, ~13!, ~22!, ~34!, and~36!
will be solved using a fourth order Runge-Kutta metho
Employing the chirp method of Anderson@10#, Malomed
and Smyth@9# found that for low values ofe the pulses
undergo oscillations about each other, while above a crit
value ofe, which depends on the initial energy of the puls
the pulses split into a pair of simple NLS solitons. It w
further shown that resonances between the internal osc
tion frequencies of the pulses and the frequency of the p
odic birefringence were possible. Near these resonance
critical value ofe, ecr , for pulse splitting was lower by up to
an order of magnitude, again depending on the initial ene
of the pulses. The same general picture is obtained in
present work. However, it is found that when the dispers
radiation shed by the pulses is taken into account,ecr is in-
creased by an order of magnitude. This is because the
radiation acts as a damping that tends to keep the pu
together. The present case of a fiber with periodic nonu
form birefringence therefore represents a situation in wh
the effect of dispersive radiation is crucial.

Figure 2 shows the critical valueecr of the amplitude of
the periodic birefringence above which the pulses split a
function of the initial amplitudeh0 of the pulses. The initial
condition used was a coupled soliton of widthw
51/(h0A11A) with the parameter valuesk51 and A
52/3 ~the value for glass!. Shown are the values ofecr as
given by the full numerical solution of the coupled NL
equations~1! and by the solution of the present approxima
h

a-

-

s

.

al
,

a-
ri-
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y
e

e
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es
i-
h

a

equations. Belowh050.9 the critical valueecr increases rap-
idly. This is because for low initial amplitudes the radiatio
causes so much relative decay of the pulses that they h
difficulty in escaping. It can be seen that both the appro
mate and full numerical solutions show a marked reduct
in ecr betweenh050.9 andh051.6. This is due to reso
nances between the periodic birefringence and the inte
oscillations of the coupled pulses. Malomed and Smyth@9#
identified a resonance between the forcing and the positio
oscillations of the pulses for

~h1
2w1!245

16

15
A~11A!3 ~38!

and a resonance between the forcing and the width osc
tions of the pulses for

~h1
2w1!225

1

p
~11A!2 ~39!

~note thath1
2w1 is a conserved quantity when radiation

neglected, as in Malomed and Smyth@9#!. These resonance
occur ath050.96 andh051.37 respectively for the param
eter values of Fig. 2. The large trough in Fig. 2 thus enco
passes these two resonant values. Outside of this troug
can be seen that the agreement between the critical valu
e is quite good. However, inside the trough there is sign
cant disagreement between the approximate and full num
cal values. The reason for this is the chaotic nature of
oscillations of the pulse parameters as the critical value oe
is approached, particularly in the resonant trough for wh
chaotic oscillations set in for quite low values ofe.

While the present approximate equations do not yi
good agreement for the values ofecr in the resonant trough
the agreement obtained in the present work is much be
than that obtained by Malomed and Smyth@9#. Malomed and
Smyth also found a resonant trough lying between ab
h050.8 andh051.5. However, the values ofecr in this
trough were about 0.05, while outside the trough they fou
critical values of around 0.6 to 0.8. So by including radiati

FIG. 2. Critical forcing amplitude for pulse separationecr as a
function of initial pulse amplitudeh0 for w51.0/(h0A11A), k
51.0, andA52/3. Full numerical solution:L; approximate equa-
tions: 1.
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FIG. 3. Comparison between full numerical solution: ; solution of present approximate equations: ; approximate equation
of Malomed and Smyth: ----. The initial conditions areh051.2 andw51.0/(h0A11A) with k51.0 andA52/3. ~a! Amplitude of pulseu1

as a function ofz for e50.1. ~b! Pulse separation 2y1 as a function ofz for e50.1. ~c! Amplitude of pulseu1 as a function ofz for e
50.15. ~d! Pulse separation 2y1 as a function ofz for e50.15.
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the present approximation gives better agreement in the r
nant trough, where the effects of radiation are expected to
more important.

Figure 3 shows amplitude and position comparisons
h051.2 and w051/(h0A11A) with k51 and A52/3.
Shown are comparisons between the full numerical solu
of the coupled NLS equations~1!, the solution of the presen
approximate equations and the solution of the equation
Malomed and Smyth@9#. The initial conditionh051.2 lies
in the middle of the resonant trough of Fig. 2. In Figs. 3~a!
and 3~b! these comparisons are shown fore50.1, which lies
well below the critical forcing amplitude. It can be seen th
even well below the critical forcing amplitude the full nu
merical solution shows oscillations that look chaotic, so t
precise agreement is not expected with the approximate
lution. However, it can be seen from Fig. 3~a! that while the
exact details of the pulse amplitude oscillations are not gi
by the present approximate equations, the overall tren
well predicted, with good agreement with the rate at wh
the numerical amplitude decays. This is in contrast with
solution of the equations of Malomed and Smyth for whi
there is no amplitude decay due to the shed dispersive ra
tion not being taken into account. The position oscillatio
shown in Fig. 3~b! again look chaotic and the detailed agre
ment between the numerical and approximate solutions is
o-
be

r

n

of

t

t
o-

n
is
h
e

ia-
s
-
ot

good. However, the overall trend of the position oscillatio
is reasonably well predicted by the present approxim
equations.

Figures 3~c! and 3~d! show amplitude and position com
parisons fore50.15, which is approaching the critical forc
ing amplitude. The oscillations are now quite chaotic. Ho
ever, as for the lower valuee50.1, the overall decay of the
amplitude is well predicted by the present approximate eq
tions. The amplitude as given by the approximate equati
of Malomed and Smyth shows too large an oscillation and
decay. The separation of the pulses as given by the pre
approximate equations is not in good agreement with the
numerical solution. This is to be expected as the numer
position oscillations are very chaotic. Also the critical val
of e for h051.2 as given by the approximate equations
above the numerical value, so good agreement is not
pected near the critical for the position of the pulses.

Better agreement between the approximate and full
merical solutions is obtained when the initial condition li
away from the middle of the resonant trough. Such a cas
shown in Fig. 4 where comparisons between the full num
cal solution, the solution of the present approximate eq
tions, and the approximate equations of Malomed and Sm
@9# are shown for the initial conditionsh051.0 and w0

51/(h0A11A) with e50.1, k51.0, andA52/3. Compari-
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sons between the amplitude of the pulseu1 and the separa
tion of the pulses are shown. It can be seen that there is g
agreement between the solution of the present approxim
equations and the full numerical solution, in marked contr

FIG. 4. Comparison between full numerical solution: ; so-
lution of present approximate equations: ; approximate
equations of Malomed and Smyth: ----. The initial conditions a
h051.0 and w51.0/(h0A11A) with k51.0, e50.10, and A
52/3. ~a! Amplitude of pulseu1 as a function ofz. ~b! Pulse
separation 2y1 as a function ofz.
k

c-

. E

. E
od
te

st

to the solution of the approximate equations of Malomed a
Smyth. If the effect of the shed radiation was neglected in
present approximate equations, so thata50 in Eq. ~34! and
the u term in the momentum equation~36! was neglected,
then the present equations would yield results similar
those for the equations of Malomed and Smyth, as show
Fig. 4. Hence the inclusion of the dispersive radiation sh
as the pulses evolve is critical to obtaining good agreem
with the full numerical solution.

V. CONCLUSIONS

Approximate equations governing coupled pulse evo
tion in a nonlinear optical fiber with a periodically varyin
birefringence have been derived using an averaged Lagr
ian. The effect of the dispersive radiation shed as the pu
evolve has been included by finding appropriate solutions
the linearized form of the coupled NLS equations govern
the pulses. For high enough values of the amplitude of
periodic birefringence the pulses in the two modes sp
Resonances between the periodic forcing and the inte
oscillations of the pulses are possible and around these r
nances the critical amplitude of the birefringence for pu
splitting is significantly lowered. Good agreement betwe
the solutions of the approximate equations and full numer
solutions were obtained for parameter values away fr
resonance. Near resonance the oscillations of the pulse
plitude and position were found to be chaotic, so that go
agreement between the approximate and numerical solut
was not obtained, or indeed expected. However, the rat
decay of the pulse amplitude was found to be well predic
by the approximate equations, even near resonance. By c
parison with previous approximate solutions which did n
include the effect of the dispersive radiation shed as
pulses evolve, it was shown that the inclusion of this rad
tion is necessary in order to obtain good agreement with
numerical solutions.
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