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Effect of radiative loss on pulses in periodically inhomogeneous birefringent optical fibers
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The evolution of coupled pulses in a nonlinear birefringent optical fiber with a periodic modulation of the
group velocity birefringence is considered. By using a trial function consisting of coupled pulses with variable
parameters in the two modes in an averaged Lagrangian, ordinary differential equations for the pulse param-
eters are obtained. Furthermore, by considering linearized equations the effect of the dispersive radiation shed
as the pulses evolve is calculated and the ordinary differential equations are augmented to include mass and
momentum loss due to dispersive radiation. It is found that the inclusion of this dispersive radiation is
necessary in order to obtain good agreement with full humerical solutions of the governing equations.
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[. INTRODUCTION particularly when a resonance between the pulse oscillations
and the forcing exists. It is the determination of the effect of
The use of solitons as information carriers in optical com-this shed radiation that is the subject of the present work.
munication systems was first proposed by Hasegawa and In the case of the NLS equation, Kath and Smjil]
Tapperf 1]. Since this time there has been extensive researctieveloped an approximate method to determine the effect of
on the dynamics of soliton propagation in nonlinear opticalthe dispersive radiation shed by a pulse as it evolves from an
fibers. Much of this research has centered around the coupleditial condition to a soliton. This method assumed that the
solitons that exist in birefringent nonlinear optical fibers pulse evolves with the sech profile of a NLS soliton, but with
since birefringence can affect the propagation of solitons ints parameters such as amplitude and width depending on the
long distance communication systefi2g. As well as having distancez down the fiber. Ordinary differential equations for
detrimental effects, birefringence can be used to advantage these parameters were then determined via the Lagrangian
all-optical devices such as nonlinear directional couflfs  for the NLS equation. The effect of the dispersive radiation
Real optical fibers are of course nonuniform and the effect ohed as the pulse evolves was then added to these variational
this nonuniformity on soliton propagation needs to be invesequations by determining an appropriate solution of the lin-
tigated. The variation of fiber properties along a real opticakarized NLS equation. Solutions of these variational equa-
fiber can be complicated and studies to date have chosen timns with the effect of dispersive radiation added were found
consider either of two special cases, a periodic variation or & be in excellent agreement with full numerical solutions of
random variation. Soliton propagation in a nonuniform, non-the NLS equation. The method of Kath and Smyth has been
birefringent optical fiber, which is governed by the nonlinearextended to model a nonlinear twin-core filjartype of all-
Schralinger (NLS) equation, has been investigated for a pe-optical switch [12], coupled pulse propagation in (@ni-
riodic variation of the dispersion by Gorddd], Abdullaev  form) birefringent optical fiber[13] and the stability of
et al. [5], Malomedet al.[6], and Abdullaev and Capuf@]  coupled solitons in a birefringent optical fibgt4]. In all
and for a random variation of the dispersion by Ueda andhese extensions it was found that there was very good agree-
Kath [8] and Abdullaev and Caputd]. The extension to a ment with full numerical solutions of the relevant governing
birefringent fibre with a periodic variation of the birefrin- equations. In previous studies, approximate equations gov-
gence parameter was made by Malomed and Sf®jthsing  erning pulse evolution in nonlinear optical fibers had been
the chirp variational method of Andersgi0]. In the case of obtained using the chirp variational method of Anderson
a birefringent fibre with a periodic birefringence modulation[10]. However, this method does not include the radiation
it was found that resonances between the forcing due to thehed by the pulses as they evolve. It has been found that by
periodic birefringence and the amplitude or position oscilla-including the effect of this radiation, the method of Kath and
tions of the pulses could exist. However, the work of Mal- Smyth yields significantly better agreement with full numeri-
omed and Smyth did not take account of the dispersive raeal solutions.
diation shed as the pulses evolve. It is expected that this In the present work the method of Kath and Smjth]
radiation will have a significant effect on the pulse evolution,will be extended to study the evolution of coupled pulses in
a nonlinear birefringent optical fiber whose birefringence pa-
rameter has a periodic variation down its length. It is found
*Electronic address: noel@maths.ed.ac.uk that the calculation of the shed radiation is particularly
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simple in this case as it is determined by the periodic form oflicity of the equations allows the effect of the dispersive
the birefringence. This simplicity is similar to the case forradiation shed as pulses evolve to be calculated. This then
the NLS equation with periodic dispersipfl]. Above a criti-  gives an idea of the effect of dispersive radiation in more
cal value of the amplitude of the periodic birefringence it isphysically realistic cases.

found that the pulses in the two modes split apart, as was The coupled NLS systertl) has the Lagrangian

found by Malomed and Smyf{®]. However, the critical val-

ues found by Malomed and Smyth are much lower than the

values obtained from both the approximate equations of the L=i(uu} —u*u,)+|u]?—|u|*+i8(z)(uuf —u*uy)

present work and from full numerical solutions. This is due e . ) 4 .«

to the neglect of the radiation shed as the pulses evolve since ~ +i(vv; —v*vy)+ v *=v]*=i8(2) (v —v*vy)

the shed radiation acts as a damper on the oscillations and —2A|ul?v|? 3)
tends to keep the pulses together. Both the full numerical '

solution and the solution of the approximate equations de-

rived in the present work show a broad trough in the critical
forcing amplitude for pulse splitting in the vicinity of the
resonances found by Malomed and Smyth. It is found tha
the inclusion of the dispersive radiation leads to good agree-
ment between solutions of the present approximate equations

and full numerical solutions of the coupled NLS equations t—y
governing a birefringent fiber. Indeed by comparing with so- u:( 7713ech—1 +ig;
lutions of the equations of Malomed and Smyth it is shown W1

that the inclusion of this radiation is necessary in order to

obtain adequate agreement with full numerical solutions.

where * denotes the complex conjugate. To obtain an ap-
roximate solution of the coupled NLS equatiofly for
volving coupled pulses, the forms

i1 +iVa(t-yy)

ei02+iV2(t—y2) (4)

Y2 .
v =( nzsech—2 +ig,
Il. APPROXIMATE EQUATIONS Wy

Let us assume that the nonlinearity in the optical fiber can

be described by the Kerr effect. Then the nondimensionalij pe assumed for the modesandv, as in[11-14. Here
equations governing optical fibers with a nonuniform bire- 7, Wi, vi, Vi, o, andg;, i=1,2, are functions of the

fringence and with two distinct modes operating in thegisiancez along the fiber. The first terms in these expressions
anomalous dispersion regime are the coupled nonlinegg, \, and, represent varying solitary wave pulses. The sec-
Schralinger (NLS) equationd 15] ond terms represent the effect of tew frequency radia-

2 tion in the vicinity of the pulsefl1]. These second terms are

_du ou 197U .

i —+i8(z) —+ = —5 + (|u]>*+ Ajv|Hu=0, assumed to have nodependence for two reasons. The first
9z gt = 24t is that full numerical solutions of the coupled NLS equations
3 P (1) show that the radiation in the vicinity of the pulses has

v v v

i ——18(z2) —+ = — +([v]2+Alu[»v=0. (1) essentially constant magnitude, as_{1r1—14]. The second is
a2 4t that the perturbed inverse scattering solution of Gorfiin
for a near-soliton initial condition for the NLS equation
Hereu andu are the complex valued envelopes of the tWogp s that the dispersive radiation in the vicinity of the
modes,t is the normalized reduced time, aads the nor-  g\qying soliton is of low frequency11]. The dispersive
malized spatial variable along the length of the fiber. The,qiation then forms shelves under the pulses, as has been
parameteA is the scaled nonlinear cross-phase-modulation,seryved in experimental situatiofts7]. Since from numeri-
coefficient andj(2) is half the difference in the linear group ¢4 solutions it is observed that the dispersive radiation has
velocity due to the linear birefringence. As a simple model ofgm | amplitude relative to the pulses, it will be assumed that
a fiber with varying group velqcny bwgfrmgence, it is as- lgil<#, i=1,2. The final point to note about the pulse
sumed thats is a periodic function of distance down the  f5ms (4) is that the dispersive radiation cannot continue to
fiber be independent df away from the pulses. As ifLl1-14, it
. is therefore assumed that the form of the dispersive radiation
8(2)=e sin(kz). @ Nolds for —/,/2<t</4/2 for mode u and —/,/2<t

This expression fo(z) has no constant component since it <7 2/2 for modev. The form of the dispersive radiation
can be factored out using a simple phase transformatiorPutside these intervals will be dlscuss_ed in the next section.
This model of a nonuniform fiber is, of course, extremely Furthermore, the values of; and /", will be found by ex-
idealized. For a start, the assumed periodic variation of th@mining the yet to be derived pulse equations.

birefringence is unrealistic for a real fiber. Furthermore,zhe ~ The trial functions(4) are now substituted into the La-
dependence of the other coefficients in the coupled NLgrangian(3), from which the averaged Lagrangian
equationg1) have been neglected and, in the case of a peri-
odically twisted fiber, a linear coupling term in the coupled L= Jm Ldt (5)
NLS equations has been neglecfdé]. In spite of all these P

simplifications, the study of the coupled NLS equatighs

with & given by Eq.(2) is still worthwhile as the very sim- is obtained as
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li ! li ! ! 2 ! ! 2 7]1 4
EZ477§W1((71_V1Y1) +2m W10, —27W101 77 — 2777193 W 2/195((71_V1Y1) + 3 W_l + 2V§’7§W1_ 3 7/L11W1
2
2, 2 2 2 ’ ’ ’ ’ ’ 7 2 ’ ! 2 72
+46VyniWy— 2An1 5l 1+ AoWo( 05— VoY s) + 2 oWoQs — 2TWo0a s — 27 120,Wa + 27 ,05( 05— Voys) + 3w,
2 2 4, 2
+2V5775Wa = 3 7aWa — 46V W, (6)
[
Here the integral; is dy;
—=V;+8(2), (13
- t=y:, L t=y, dz
Ilzj sech sech dt. (7)
% W1 Wy

plus symmetric equations for the parameters of mod&he

In calculating the averaged Lagrangid, the only terms of ~ integralsl; andl, in these variational equations are defined
0(g?) andO(g?) that have been retained are those that willPY

be found to contribute to mass conservation. Any other sec-

ond order terms make a negligible contribution to the result-

ing variational equations and have been neglected. o t—y; t—y, t—vy;
Taking variations of the averaged Lagrangiég with l2= fﬁw(t—yl)secﬁ W, secft w, tanh W, dt
respect to the parameter results, on some algebraic manipu- (14)
lation, in the following equations governing the evolution of
the pulses through the nonuniform fiber and
d /101 1 77%
(W)= ——| pi— ZWi P+ A (Wil —1p) |, () = t— t— t—
dz m 2 W1 I3=f sech—22 secR—Y2 tanh-—22 dt. (15)
— Wl W2 W2
doy 1 dy, 1 7 Th led NLS equatiorid) have th
i St Vs £ T SR N _ e couple equatio ave the mass conserva-
dz 2'tdz 2™ 5<Z)V1+Aw71(Wlll 2): fion equation
€)
dgl 2 2 _2 A’]l”]% J o
Az 3n lmmwi ) . (wil1=215), - u|? dt=0, (16)
(10 -
the momentum conservation equation
d
g5 (2miwi+/199) =0, (1D P .
H. * 0 * — 2 2
I f_w(u Ug—uuy)dt ZAJ_x|u| at(lvl )dt,
17
PO e VA I AL (12
dz ST S w, ¥ and the energy conservation equation
(7 o0
Ef [i(lud®= Jul*+ [od 2= [o|*= 2A]ul?]) + 8(2) (u* U= ULy ) = 8(2) (v* v —vof) ]dt
:5’(z)f [(u*u—uuf)—(v*¥v—voy)]dt. (18

Substituting the trial function$) into the mass conservation equatid®) gives the variational equatiofil). Similarly the
variational equatiori12) can be shown to express conservation of momentum on using the momentum conservation equation
(17). Finally, substituting the trial function@}) into the energy conservation equati@®) yields
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dH d |2 771 4 2 7]% 4
973w o HVi@niwa+/1g]) - 3 n‘{w1+§W—2+v§(2n§wz+/zg§)—§n;‘wz—zAnfngl1+25v1(277§w1+/lg§)
— 28V (295Wa+ 7 595)
=2V18"(2) (275w, +/102) — 2V, 8" (2) (2 73Wa+ / 503). (19

It is noted from this equation that the energyis not conserved due to the variation in the birefringedeeith z.

For simplicity, in the present work we shall concentrate on the case of antisymmetric m@debsy, so thatn,;= 7,
W{=W,, 01=05, V1=—V,, y;=—Y,, andg;=g,. This antisymmetric assumption allows the integtal$7), |, (14), and
I3 (15) to be evaluated exactly. Under this assumption these integrals can be shown to be

B 4w,
|1—thg[§ coth{—1],
2

=1 1 coth—1]
> SintF '

2

_ Wi o coth g ¢— 3¢ cotf? (20)
W_g[ coth{+ -3¢ cothr{],
and
l3= thzg[Sgcotl"?g 3cothl—¢],
where
2y
= (21

We shall now replace the mass conservation equafithby the energy conservation equatidm®) in the set of equations
governing the evolution of the pulses. The variational equatiBnso (13) plus the energy conservation equation are not all
independent, so this can be done. Using the momentum conservation eqd@i@nd the antisymmetry assumption, the
energy conservation equatidh9) can be rewritten as

dH d[47 8 , 2004 /- 0PIV 7Lz
rEEE §VTI_§771W1+2(27]1W1+/191) —2Aninsl, _8A5(Z)

(22)

With the assumed antisymmetry, the equations governing thpresent case of a nonuniform fiber the pulses will not ap-
evolution of the pulses in the nonuniform fiber are thgn- proach a steady state since the fiber is continuously varying.
(10), (12), and(22). These equations for constafitare the  However, the shelf width expressidg3) can still be used,
same as those ¢fL.3] for pulse propagation in a birefringent \jith the steady state replaced by the local pulse amplitude

fiber. o _ n,. Therefore, in the present work, the shelf width will be
For a birefringent fiber, Kath and Smyth3] showed that tzken to be

the length/’; of the shelves under the pulses could be deter-

mined from the requirement that the frequency of oscillation 372
of the pulse amplitudey; as given by the approximate equa- 1= —. (24
tions approaches the soliton oscillation frequency as a steady 871V1+A

state is approached. This requirement gave _ _ _
Replacing the steady state amplitude by its local value allows

372 the approximate equations to respond to the local fiber prop-
fm— 23 erties.
87V1+A The system of equations governing the evolution of pulses

in a nonuniform fiber is not complete, however, since the
when the pulses approached the coupled soliton solution @iffect of the dispersive radiation shed by the pulses as they
the coupled NLS equation(d) for §=const, wherey is the  evolve has not been taken into account. This radiation is the
amplitude of the steady coupled solitary waves. In thesubject of the next section.
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* | | | | Lz = 22 s lult utu— g =0 (28
08| |$|U| Ea[ I (Z)|U| U™ Uy —uu 1= (28
07}t
and
06}
= 05 1 .0 * * 19 . * * *
S i ﬁ(u ut—uut)+iﬁ[2|5(z)(u U—uuy )+ U uy
S o4l
osl +uuf —2|ud?]1=0, (29
02} . respectively. Integrating the mass conservation equafign
o1l from the edge of the shelf=y;+/;/2 to t=o gives the
mass loss to the dispersive radiation traveling to the right as
%65 40 20 0 20 0 80
t d (= ) )
a4z |u|“dt=V,r (30
FIG. 1. Numerical solution foju| of the coupled NLS equations Z Jyy+rq02
(1) atz=60.0 fore=0.1, k=1.0, A=2/3 and the initial conditions
7=1.0 andw=1.0A/T+A. on using the form26) for the dispersive radiation. Similarly
integrating the mass conservation equation frioar—o0 to
Ill. DISPERSIVE RADIATION t=y,—/'1/2 gives the mass loss to dispersive radiation trav-
, i i eling to the left as
As can be seen from Fig. 1, the amplitude of the disper-
sive radiation shed by the pulses is small compared with the d (vi-/a2
pulse amplitude. Hence the shed dispersive radiation is gov- 4z J lu|2dt=—V,r2. (3D
erned by the linearized NLS equation ZJ-=
U Ju 1 6%u The momentum conservation equati@®) can be integrated
| — +18(2) -+ 5 =2 =0. (25  in the same way to give the momentum loss to dispersive

radiation traveling to the right as

In previous studies of the radiation shed by an evolving pulse q
[11-14 this radiation was calculated as the solution of an Co fw X A V22
initial value problem for an appropriate linearized NLS equa- I dz yl+/l/2(u Ui uur)dt=—4vir (32
tion. In the present case of a nonuniform fiber, this initial
value type solution is not appropriate since the fiber is varyand the momentum loss to radiation traveling to the left as
ing continuously, which causes the pulses to never settle to a
steady state and so radiate continuously. Hence the appropri- o d (nam72
ate solution of the linearized NLS equatid@5) in the I dz J
present context is that of a continuous source.

It can be easily verified that the linearized NLS equation
(25) has the modulated traveling wave solution

(U*uy—uu¥)dt=4Var2, (33

—o0

These mass and momentum loss expressions can then be
added to the variational equations of the previous section to
_ ggft- (U2if2z+i(Bellocogka) 26 complete the approximate equations governing the evolution
u=be ' (26) of the pulses. Before this is done, however, care must be
aken with the form(26) for the shed radiation. This radia-

whereB and B are constants. Let us assume for the momen ion has phase velocity, + 8. Now the group velocity for

that the properties of the pulses were constant. Then if w o . i
denote the height of the shelves below the evolving pulses b e radiation(26) is cg=2V, + 4. Hence forv,>0, the ra-

r, matching between the shelf and the shed radiation give lation is shed to the rig_ht of the pulseand the mass gnd
B=r. Since the radiation is being shed by the pulses, thénomentum loss expressio(&0) and(32) are the appropriate

phase velocity of the shed radiation at the end of the sheff"€*: By the same reasoning, the mass and momentum loss
must be equal to the pulse velocity, so that expressiong31) and (33) are the appropriate ones fof;

<0. This unsymmetric nature of the mass and momentum
_ loss can be seen in Fig. 1.
=2V 2
A ! @7 As in [11-14), the appropriate mass loss expressis)
[see the variational equatidd3)]. These expressions & or (31) is added to the variational equations of the previous
and 3 are only strictly valid if the pulses have constant prop-S€ction, so that the equation fgg (10) becomes
erties. However, let us assume that these expressior8 for

2
and B hold when the pulses are varying. This is equivalent to % __ i (72—wy2)— Am; (Wyl{—21,)— 2@
assuming thaB and B are slowly varying, which is the case  dz 37 T mws EL 22 9
when e is small, as in the present work. (34

The linearized NLS equatiof25) has the mass and mo-
mentum conservation equations where
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37|V VI+A 08
a=——""" " (35) o
16 0.7}

Adding the appropriate momentum loss expressi®?) or 0L |
(33) to the momentum equatioil2) gives the final momen- X
tum conservation equation as

05} o " T
d An’n? Eor S +
: 7172 L + + 7F _
d_z[(2ﬂ5W1+/19%)V1]:_ l3—26Vir?, 04 + * o
(36) 03} j
whered=1 if V,>0 andd=—1 if V,<0, as discussed in 02l o o o © ° _
the previous paragraph. o &
The final quantity needed, the heighof the shelf under 045 : - © — - e J
the pulses, can be found from the work of Kath and Smyth ' | n ' :
0

[13] on pulse evolution in birefringent fibers as
FIG. 2. Critical forcing amplitude for pulse separatien as a

r2:3771\/1"“A(2 20t/ 2) 37) function of initial pulse amplituden, for w=1.0/(7,y1+A), k
8 7W1T 7 191) =1.0, andA=2/3. Full numerical solution® ; approximate equa-

tions: +.
The full set of equations governing the evolution of the
pulses, including mass and momentum loss to dispersive raquations. Below;,= 0.9 the critical values, increases rap-
diation, has now been derived, these equations b@ng9),  idly. This is because for low initial amplitudes the radiation
(13), (22, (34), and (36). In the next section solutions of causes so much relative decay of the pulses that they have
these approximate equations will be compared with full nu-difficulty in escaping. It can be seen that both the approxi-
merical solutions of the coupled NLS equatigid$ and so-  mate and full numerical solutions show a marked reduction

lutions of the chirp equations ¢8]. in e, betweenz,=0.9 and5,=1.6. This is due to reso-
nances between the periodic birefringence and the internal
IV. RESULTS oscillations of the coupled pulses. Malomed and Snigth

) ) ] ] _identified a resonance between the forcing and the positional
In the comparisons of this section the numerical solutiongscillations of the pulses for

of the coupled NLS equatior(d) will be obtained using the
pseudospectral method of Fornberg and WhitHa®] and o 4 16 3
the approximate equatiori8), (9), (13), (22), (34), and(36) (71W1) :1_5/'\(1+A) (38)
will be solved using a fourth order Runge-Kutta method.
Employing the chirp method of Andersdi(], Malomed and a resonance between the forcing and the width oscilla-
and Smyth[9] found that for low values ofe the pulses tions of the pulses for
undergo oscillations about each other, while above a critical
value of e, which depends on the initial energy of the pulses, 2
the pulses split into a pair of simple NLS solitons. It was (71W1)
further shown that resonances between the internal oscilla-
tion frequencies of the pulses and the frequency of the peritnote thatniwl is a conserved quantity when radiation is
odic birefringence were possible. Near these resonances theglected, as in Malomed and Smy#j). These resonances
critical value ofe, €, for pulse splitting was lower by up to occur aty,=0.96 and»n,=1.37 respectively for the param-
an order of magnitude, again depending on the initial energgter values of Fig. 2. The large trough in Fig. 2 thus encom-
of the pulses. The same general picture is obtained in thpasses these two resonant values. Outside of this trough it
present work. However, it is found that when the dispersivecan be seen that the agreement between the critical values of
radiation shed by the pulses is taken into accosgtis in- ¢ is quite good. However, inside the trough there is signifi-
creased by an order of magnitude. This is because the shednt disagreement between the approximate and full numeri-
radiation acts as a damping that tends to keep the pulseal values. The reason for this is the chaotic nature of the
together. The present case of a fiber with periodic nonuniescillations of the pulse parameters as the critical value of
form birefringence therefore represents a situation in whiclis approached, particularly in the resonant trough for which
the effect of dispersive radiation is crucial. chaotic oscillations set in for quite low values ef

Figure 2 shows the critical value,, of the amplitude of While the present approximate equations do not yield
the periodic birefringence above which the pulses split as good agreement for the values f in the resonant trough,
function of the initial amplitudey, of the pulses. The initial the agreement obtained in the present work is much better
condition used was a coupled soliton of widtv  than that obtained by Malomed and Sm{#h. Malomed and
=1/(noVv1+A) with the parameter valuek=1 and A  Smyth also found a resonant trough lying between about
=2/3 (the value for glags Shown are the values @&, as 7,=0.8 and no=1.5. However, the values of, in this
given by the full numerical solution of the coupled NLS trough were about 0.05, while outside the trough they found
equationg1) and by the solution of the present approximatecritical values of around 0.6 to 0.8. So by including radiation

1 2
=—(1+A) (39)
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(2)

2y,

A

0 20 40 60 80 100

z
z

FIG. 3. Comparison between full numerical solutiom:— ; solution of present approximate equations:— — ; approximate equations
of Malomed and Smyth: ----. The initial conditions ang= 1.2 andw=1.0/(7yv1+A) with k=1.0 andA=2/3. () Amplitude of pulseu;
as a function ofz for e=0.1. (b) Pulse separationyg as a function ofz for e=0.1. (c) Amplitude of pulseu, as a function ofz for e
=0.15. (d) Pulse separationy2 as a function of for e=0.15.

the present approximation gives better agreement in the resgood. However, the overall trend of the position oscillations
nant trough, where the effects of radiation are expected to bis reasonably well predicted by the present approximate
more important. equations.

Figure 3 shows amplitude and position comparisons for Figures 3c) and 3d) show amplitude and position com-
no=1.2 and wy=1/(59vy1+A) with k=1 and A=2/3.  parisons fore=0.15, which is approaching the critical forc-
Shown are comparisons between the full numerical solutiomng amplitude. The oscillations are now quite chaotic. How-
of the coupled NLS equatior(4), the solution of the present ever, as for the lower value=0.1, the overall decay of the
approximate equations and the solution of the equations aimplitude is well predicted by the present approximate equa-
Malomed and Smytth9]. The initial conditionz,=1.2 lies tions. The amplitude as given by the approximate equations
in the middle of the resonant trough of Fig. 2. In Figéa)3 of Malomed and Smyth shows too large an oscillation and no
and 3b) these comparisons are shown &+ 0.1, which lies decay. The separation of the pulses as given by the present
well below the critical forcing amplitude. It can be seen thatapproximate equations is not in good agreement with the full
even well below the critical forcing amplitude the full nu- numerical solution. This is to be expected as the numerical
merical solution shows oscillations that look chaotic, so thaposition oscillations are very chaotic. Also the critical value
precise agreement is not expected with the approximate sof e for ny=1.2 as given by the approximate equations is
lution. However, it can be seen from FigiaBthat while the above the numerical value, so good agreement is not ex-
exact details of the pulse amplitude oscillations are not givempected near the critical for the position of the pulses.
by the present approximate equations, the overall trend is Better agreement between the approximate and full nu-
well predicted, with good agreement with the rate at whichmerical solutions is obtained when the initial condition lies
the numerical amplitude decays. This is in contrast with theaway from the middle of the resonant trough. Such a case is
solution of the equations of Malomed and Smyth for whichshown in Fig. 4 where comparisons between the full numeri-
there is no amplitude decay due to the shed dispersive radiaal solution, the solution of the present approximate equa-
tion not being taken into account. The position oscillationstions, and the approximate equations of Malomed and Smyth
shown in Fig. 8b) again look chaotic and the detailed agree-[9] are shown for the initial conditionsyy=1.0 andw,
ment between the numerical and approximate solutions is net 1/(79y1+A) with e=0.1, k=1.0, andA=2/3. Compari-
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1.05

to the solution of the approximate equations of Malomed and
Smyth. If the effect of the shed radiation was neglected in the
present approximate equations, so that0 in Eq.(34) and

the 6 term in the momentum equatidi36) was neglected,
then the present equations would yield results similar to
those for the equations of Malomed and Smyth, as shown in
Fig. 4. Hence the inclusion of the dispersive radiation shed
as the pulses evolve is critical to obtaining good agreement
with the full numerical solution.

(a)

095} |

0.9}

[u,|
085}

0.8
V. CONCLUSIONS

075}
Approximate equations governing coupled pulse evolu-
0.7 s s - - tion in a nonlinear optical fiber with a periodically varying
birefringence have been derived using an averaged Lagrang-
ian. The effect of the dispersive radiation shed as the pulses
evolve has been included by finding appropriate solutions of
the linearized form of the coupled NLS equations governing
the pulses. For high enough values of the amplitude of the
periodic birefringence the pulses in the two modes split.
Resonances between the periodic forcing and the internal
oscillations of the pulses are possible and around these reso-
nances the critical amplitude of the birefringence for pulse
splitting is significantly lowered. Good agreement between
the solutions of the approximate equations and full numerical
solutions were obtained for parameter values away from
resonance. Near resonance the oscillations of the pulse am-
plitude and position were found to be chaotic, so that good
agreement between the approximate and numerical solutions
0 20 20 ) 0 700 was not obtained, or indeed expected. However, the rate of
z decay of the pulse amplitude was found to be well predicted

FIG. 4. Comparison between full numerical solution:—; so- by t.he approximat_e equations.’ €ven near resonance. By com-
lution of present approximate equations:— —: approximate ~Parison with previous approximate solut|.on.s which did not
equations of Malomed and Smyth: ----. The initial conditions areInCIUde the effgct of the dispersive _radlat!on She‘?‘ as Fhe
7o=21.0 and w=1.0/(7o\J1+A) with k=1.0, €=0.10, andA pulses evolve, it was shown that the inclusion of this radia-
=2/3. (a) Amplitude of pulseu, as a function ofz. (b) Pulse  {ion is necessary in order to obtain good agreement with full
separation ¢, as a function of. numerical solutions.

sons between the amplitude of the pulseand the separa-
tion of the pulses are shown. It can be seen that there is good
agreement between the solution of the present approximate N.F.S. would like to thank B.S. and S.S. for helpful dis-
equations and the full numerical solution, in marked contrastussions.
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